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Abstract
Introduction: Major depressive disorder (MDD) is a mental disorder caused by the 
combination of genetic, environmental, and psychological factors. Over the years, a 
number of genes potentially associated with MDD have been identified. However, in 
many cases, the role of these genes and their relationship in the etiology and devel-
opment of MDD remains unclear. Under such situation, a systems biology approach 
focusing on the function correlation and interaction of the candidate genes in the 
context of MDD will provide useful information on exploring the molecular mecha-
nisms underlying the disease.
Methods: We collected genes potentially related to MDD by screening the human genetic 
studies deposited in PubMed (https​://www.ncbi.nlm.nih.gov/pubmed). The main biologi-
cal themes within the genes were explored by function and pathway enrichment analysis. 
Then, the interaction of genes was analyzed in the context of protein–protein interaction 
network and a MDD-specific network was built by Steiner minimal tree algorithm.
Results: We collected 255 candidate genes reported to be associated with MDD 
from available publications. Functional analysis revealed that biological processes 
and biochemical pathways related to neuronal development, endocrine, cell growth 
and/or survivals, and immunology were enriched in these genes. The pathways could 
be largely grouped into three modules involved in biological procedures related to 
nervous system, the immune system, and the endocrine system, respectively. From 
the MDD-specific network, 35 novel genes potentially associated with the disease 
were identified.
Conclusion: By means of network- and pathway-based methods, we explored the 
molecular mechanism underlying the pathogenesis of MDD at a systems biology 
level. Results from our work could provide valuable clues for understanding the mo-
lecular features of MDD.
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1  | INTRODUC TION

Major depressive disorder (MDD) is a common psychiatric disor-
der that affects about 6% population worldwide (Kessler & Bromet, 
2013; Malhi & Mann, 2018). It is estimated that the lifetime inci-
dence of depression is 16.6% (Dunn et al., 2015), and the rate for 
females is twice that of males (Muglia et al., 2010). Major depres-
sive disorder can negatively affect almost all aspects of a person, 
including personal life, work–life, education, and general health. 
At the same time, depression is a leading cause for suicide, it is 
estimated that 2%–8% of people diagnosed with depression die 
by suicide, and about 50% of people who die by suicide had de-
pression or other mood disorders (Bachmann, 2018; Bostwick & 
Pankratz, 2000). The disease does not only severely limit the psy-
chosocial functioning and deteriorate life quality of the patients, 
but also brings heavy spiritual and economic burden to their fami-
lies and the society (Wakefield, Schmitz, Schmitz, First, & Horwitz, 
2007). Actually, depression is among the most burdensome disease 
worldwide due to its considerable adverse effects on activities of 
daily living (Bruffaerts et al., 2012; Ustun, Ayuso-Mateos, Ayuso-
Mateos, Chatterji, Mathers, & Murray, 2004). In the United States 
alone, depression causes about 400 million disability days per year 
and results in an annual economic burden as high as $210 billion 
(Greenberg, Fournier, Fournier, Sisitsky, Pike, & Kessler, 2015). 
Although in developing countries like China, the lifetime rates of 
depression are lower than that in developed world, the prevalence 
and costs related to the disease increase rapidly (Hsieh & Qin, 
2018; Hu, He, He, Zhang, & Chen, 2007; Kessler & Bromet, 2013; 
Phillips et al., 2009; Yang et al., 2013).

Till now, the cause of MDD is still poorly understood although 
much effort has been dedicated to explore the pathogenesis and 
molecular mechanisms of the disease via various approaches 
(CONVERGE consortium, 2015; Flint & Kendler, 2014; Kang et 
al., 2012; Mehta, Menke, Menke, & Binder, 2010). Physiologically, 
MDD is featured with symptom heterogeneity and changes in 
multiple biological systems are involved (Belmaker & Agam, 
2008; Guo et al., 2012). Generally, MDD develops as a result of 
the combination of multiple factors, including the genetic factors, 
environmental, and psychological factors (Han, 2012). Actually, 
a large fraction of the risk of MDD can be attributed to genet-
ics (American Psychiatric Association, 2013; Kendler et al., 2019; 
Ripke et al., 2013). For example, it is estimated that heritability 
for MDD is about 40% and the risk of developing depression for 
members from a family with depression history is 1.5–3 times 
higher than the normal population (Kendler, Gatz, Gatz, Gardner, 
& Pedersen, 2006; Pincus et al., 1999). As a polygenic disorder 
with divergent genetic architecture, many genetic factors, as well 
as gene–environment interactions, are believed to be among the 
risk factors of MDD (CONVERGE consortium, 2015; Ripke et al., 
2013). A number of genes have been suggested to be associated 
with MDD, for example, the  sodium-dependent serotonin trans-
porter and solute carrier family 6 member 4 (SLC6A4), 5-hydroxy-
tryptamine receptor 2A (5HT2A), apolipoprotein E (APOE), and 

brain-derived neurotrophic factor (BDNF; Bosker et al., 2011; Flint 
& Kendler, 2014; Lopez-Leon et al., 2008). Among them, SLC6A4 is 
one of the most extensively studied genes, which is responsible for 
transporting serotonin from the synaptic spaces into the presyn-
aptic neurons and recycling it in a sodium-dependent manner. The 
5-HTTLPR polymorphism of this gene is found to be associated 
with both depression and other mental disorders (Clarke, Flint, 
Flint, Attwood, & Munafò, 2010). As the main excitatory receptor 
of serotonin, the genetic variants of 5HT2A have been found to 
be related to several psychiatric disorders, including depression 
(Choi et al., 2004). The epsilon-4 type allele of APOE is found to 
be associated with depression in patients with Alzheimer's disease 
(Delano-Wood et al., 2008). BDNF is involved in activity-depen-
dent neuronal plasticity, and evidence from clinical studies shows 
that decreased activity of BDNF occurs in the brain of patients 
with major depression (Lee & Kim, 2010). Similar to other complex 
mental disorders, genetic studies have suggested that for MDD, 
the individual differences may be caused by multiple genes and 
their variants. Genes with different functions may work cooper-
atively to increase the risk of MDD, with a relatively small effect 
exerted by each gene. In line with this view, more and more genes 
have been found to be potentially associated with MDD (Wray 
et al., 2018). For these genes, although a few plausible candidate 
genes have been partially replicated, some of them are considered 
to be problematic (Flint & Kendler, 2014). This is especially true 
as high-throughput methods like genome-wide association study 
(GWAS) are increasingly applied to genetic studies of the disease. 
Under such circumstances, a comprehensive analysis of the po-
tential causal genes of MDD within a pathway and/or a network 
framework may not only provide us important insights beyond the 
conventional single-gene analyses, but also offer consolidated val-
idation for the individual candidate genes.

In the current study, we first collected the MDD-related genes 
from genetic association studies. Then, we conducted biological en-
richment analyses to detect the significant biological themes within 
these genetic factors and investigated the interactions among the 
enriched biochemical pathways. In addition, a MDD-related subnet-
work based on protein–protein interaction network was constructed 
and its topological characteristics were analyzed. This study could 
offer valuable hints for understanding the molecular mechanisms of 
MDD from a perspective of systems biology.

2  | MATERIAL S AND METHODS

2.1 | Susceptibility gene set of MDD

As a polygenic disease, a number of genes potentially associated 
with the pathogenesis of MDD have been reported (Gatt, Burton, 
Burton, Williams, & Schofield, 2015; Manoharan, Shewade, Shewade, 
Rajkumar, & Adithan, 2016; Yin et al., 2016). In this study, the candidate 
genes for MDD were collected by searching the human genetic asso-
ciation studies deposited in PubMed (https​://www.ncbi.nlm.nih.gov/

https://www.ncbi.nlm.nih.gov/pubmed/
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pubme​d/). Briefly, similar to previous studies (Wang & Li, 2010), we 
searched PubMed with the term “(Major Depressive Disorder [MeSH]) 
AND (Polymorphism [MeSH] OR Genotype [MeSH] OR Alleles 
[MeSH]) NOT (Neoplasms [MeSH]).” As of August 2017, we obtained 
a total of 1,514 publications related to MDD. Next, we reviewed the 
abstracts of these articles and kept only the association studies related 
to MDD with human subjects. From the selected publications, we nar-
rowed our selection by focusing on those reporting a significant asso-
ciation of one or more genes with the disease. To reduce the number 
of potential false-positive findings, the studies reporting negative or 
insignificant associations were not included although some genes ana-
lyzed in these studies might be real pathogenic genes of MDD. Then, 
the full reports of the selected publications were examined to ensure 
the consistency of the conclusions and the contents. In the collected 
publications, several genome-wide association (GWA) studies on MDD 
were included, and genes reported to be significantly associated with 
MDD were selected. Via such a procedure, a list of 261 studies report-
ing the association of one or more candidate genes with MDD were 
obtained (Figure 1). From these studies, genes reported to be associ-
ated with MDD were compiled for further analysis.

2.2 | Functional enrichment analysis

To reveal the major biological themes within the MDD-related genes, 
the function characteristics of these genes were explored. Briefly, 
gene ontology (GO; Fu et al., 2015) and pathway enrichment analysis 
were conducted on the MDD-related genes. Since in this study, we 
focused on the biological features underlying the candidate genes, 
only the GO category of biological process was analyzed. Biological 
pathways enriched in the MDD-related genes may be those with 
disturbed function in the pathogenesis of MDD. Both GO and path-
way enrichment analysis were finished by the ToppFun module 
of ToppGene (http://toppg​ene.cchmc.org; Chen, Bardes, Bardes, 
Aronow, & Jegga, 2009). For GO biological process analysis, items 
with 5 or more MDD-related genes and a false discovery rate (FDR) 
less than 0.05 were kept as significantly enriched ones. Then, the 
enriched items were subjected to REVIGO (Supek, Bosnjak, Bosnjak, 
Škunca, & Šmuc, 2011; http://revigo.irb.hr/) to remove the redun-
dant GO terms and obtained a list of nonredundant GO biological 
process terms enriched in the candidate genes. For pathway analysis, 
the Kyoto Gene and Genome Encyclopedia (Du et al., 2016; KEGG) 

F I G U R E  1  PRISMA flow diagram illustrating search strategy and studies included in the analysis. PRISMA is Preferred Reporting Items 
for Systematic Reviews and Meta-Analyses (http://www.prisma-state​ment.org/)
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PATHWAY was adopted as the pathway database, and a FDR thresh-
old of 0.05 was used to define a significant pathway. False discov-
ery rate was calculated via the method of Benjamini and Hochberg 
(Benjamini & Hochberg, 1995).

2.3 | Pathway cross talk analyses

The etiology and development of a complex disease are usually the 
result of simultaneous disturbance of multiple biological processes 
or pathways. Therefore, the relationship between the pathogenically 
abnormal pathways can provide useful clues to understand the mo-
lecular mechanisms of the disease. Through analyzing the network 
formed by correlated pathways, we are able to explore the biologi-
cal pathways summarized from many different studies via a system-
atic approach, which may help us to understand the etiology and 
progression of a disease from a macro perspective. Here, we used 
the pathways enriched in the MDD-related genes to construct the 
pathway cross talk network, in which two pathways were defined 
as connected if they shared three or more overlapping MDD-related 
genes. The purpose of such definition was to reduce the false posi-
tives and ensure that the correlation between a pathway pair was 
biologically meaningful. To describe the overlap between a given 
pair of pathways, we adopted two measurements (Jia, Kao, Kao, Kuo, 
& Zhao, 2011; Liu, Fan, Fan, Liu, Cheng, & Wang, 2015), that is, the 
Jaccard Coefficient = |

|
|
A∩B

A∪B

|
|
|
 and the Overlap Coefficient= |A∩B|

min(|A|,|B|)
, 

with A and B being the lists of MDD-related genes included in the 
two tested pathways, and |A| and |B| representing the number of 
MDD-related genes contained in the two pathways. In addition, we 
used the arithmetic mean of these two coefficients to measure the 
significance of pathway correlation and arranged all pairs of pathway 
in descending order of the significance. Then, Cytoscape (Shannon. 
et al., 2003) was used to output a diagraphic representation of the 
cross talk relationship between the pathways.

2.4 | The construction of MDD subnetwork

Biomolecular network, especially the protein–protein interaction 
network, has become an effective tool to analyze the molecular 
relationship in complicated biomolecular systems (Li, Wang, Wang, 
Zhao, Wu, & Pan, 2016; Przulj, Wigle, Wigle, & Jurisica, 2004). In 
this study, we treated the genes/proteins and their interactions as 
nodes and edges, respectively; then, these nodes and edges were 
connected to form a molecular network. The protein–protein in-
teraction network data used in this study were derived from direct 
physical interactions from six major common protein–protein inter-
action databases, that is, BioGM, Integrity, DIP, Peppermint, MIPS/
Mpact, and HPRD, with the self-interaction and redundant pairs 
excluded. Finally, a relatively complete human physical interac-
tion group was obtained, which included 16,022 genes/protein and 
228,122 interactions.

3  | RESULTS

3.1 | MDD candidate gene sets

Based on the human genetic association studies, we compiled a 
list of 255 candidate genes reported to be associated with MDD 
(Table S1; referred to as MDDgene, hereafter). Among the can-
didate genes collected, there were some overlapping genes that 
were not only associated with MDD, but also involved in the oc-
currence and development of other neurological diseases. For ex-
ample, some genes related to immune regulation and inflammation 
may be associated with Alzheimer's disease or depression (e.g., 
IL10 and IL1B), genes of the dopamine neurotransmitter system 
(e.g., DRD1 and DRD4), and members from the immunophilin pro-
tein family (e.g., FKBP4 and FKBP5) that may be associated with 
Alzheimer's disease or depressive disorders. In addition, there 
were also genes related to the serotonin neurotransmitter system 
and cell transport system, such as HTR2A, HTR6, TPH1, SLC1A2, 
SLC6A3, and SLC6A4. At the same time, the gene set included 
some specific genes related to MDD, such as ADCY9, ITPR1, and 
PCLO, which were involved in calcium signaling, binding, and sali-
vary secretion biological pathways. Genes related to embryonic 
development (e.g., CHST11 and PTPRR), cellular stress response, 
and blood clotting (e.g., DNAJB2, EHD3) were also included. The 
diversity of MDDgene was consistent with the fact that MDD was 
a multigene and complex disease involving various physiological 
procedures.

3.2 | Functional enrichment analysis of MDDgene

Functional enrichment analysis revealed a more detailed biologi-
cal function spectrum of these MDD-related genes (Table S2). 
Among the GO terms overrepresented in MDDgene, those related 
to cell signaling, synaptic transmission, cell transport, endocrine 
system, or response to stimuli were included. GO terms associated 
with response to stimuli (e.g., multicellular organismal response 
to stress, response to wounding, response to light stimulus, and 
response to pain) were overrepresented. Such results were in line 
with previous findings that complicated correlations existed be-
tween the pathophysiological state of MDD and stress. Biological 
process terms related to synaptic transmission (e.g., trans-synaptic 
signaling; synaptic signaling; neuron–neuron synaptic transmis-
sion; positive regulation of synaptic transmission; synaptic trans-
mission, glutamatergic; and synaptic transmission, GABAergic), 
dopamine signaling (dopamine transport, dopamine metabolic 
process, dopamine uptake involved in synaptic transmission, and 
dopamine uptake), and other neural functions (e.g., regulation of 
synaptic plasticity, long-term synaptic potentiation, neuron apop-
totic process, and memory) were also enriched. Meanwhile, GO 
terms related to endocrine system (e.g., hormone secretion, insu-
lin secretion, response to insulin, and response to hormone) were 
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overrepresented. These results demonstrated that the members 
of MDDgene were diverse in molecular functions.

3.3 | Pathways enriched in MDD candidate genes

Pathway analysis identified 73 pathways with significant enrich-
ment in MDDgene (Table 1). Several pathways related to neuro-
transmission or neural function modulation were identified, for 
example, neuroactive ligand–receptor interaction, glutamatergic 
synapse, serotonergic synapse, dopaminergic synapse, GABAergic 
synapse, cholinergic synapse, and retrograde endocannabinoid 
signaling. A number of pathways involved in cellular signaling 
cascade were enriched, for example, cAMP signaling pathway, 
MAPK signaling pathway, and calcium signaling pathway. In addi-
tion, pathways related to neurological disorders, such as morphine 
addiction, amphetamine addiction, Alzheimer's disease, and alco-
holism, were significantly enriched. Moreover, immune response-
associated biological processes consisting of inflammatory bowel 
disease, inflammatory mediator regulation of TRP channels, inter-
leukin-17 (IL-17) signaling pathway, and T-cell receptor signaling 
pathway were also significantly enriched, suggesting the immuno-
logical system was involved in the etiology and pathological pro-
cess of MDD.

We further analyzed the cross talk between the enriched path-
ways that were significantly associated with MDD. Most of these 
pathways interacted with one or more other pathways, which re-
sulted in a cross talk network with 68 nodes (i.e., pathways) and 
325 edges (i.e., connection between two neighboring pathways; 
Figure 2). Based on the biological function and the relevance of 
these pathways, we could roughly divide the pathways into three 
modules. Pathways in the first module were mainly related to cel-
lular signaling transduction (e.g., cAMP signaling pathway, calcium 
signaling pathway, cGMP-PKG signaling pathway, and phospho-
lipase D signaling pathway) or the endocrine control (e.g., renin 
secretion, aldosterone synthesis and secretion, oxytocin signal-
ing pathway, thyroid hormone synthesis, and estrogen signaling 
pathway). In the second module, many pathways were related to 
neuronal function like neurotransmission (e.g., cholinergic syn-
apse, dopaminergic synapse, GABAergic synapse, glutamatergic 
synapse, and long-term depression), neurological disorders (e.g., 
amphetamine addiction, cocaine addiction, morphine addiction, 
nicotine addiction, alcoholism, amyotrophic lateral sclerosis, and 
Alzheimer's disease), endocrine, and metabolic diseases (e.g., type 
II diabetes mellitus and insulin resistance). The last module was 
largely concentrated in pathways related to the immune system, 
such as cytosolic DNA-sensing pathway, IL-17 signaling pathway, 
NOD-like receptor signaling pathway, T-cell receptor signaling 
pathway and Th17 cell differentiation, and Toll-like receptor sig-
naling pathway. These three modules were not independent of 
each other; instead, they were interconnected by one or more 
pathways. In this cross talk network, a few other types of path-
ways related to biological processes such as aging, apoptosis, and 

environmental adaptation were also included. Thus, the etiology 
and development of MDD could be the consequence of the abnor-
mality in multiple systems.

3.4 | MDD-specific network

To further explore the feature of genes associated with MDD, we 
constructed a subnetwork for the disease from the human pro-
tein–protein interaction network via the Steiner minimal tree algo-
rithm (Li, Mao, Mao, & Wei, 2008; Sadeghi & Fröhlich, 2013), which 
tried to connect the largest number of input nodes (genes included 
in MDDgene in our case) via the least number of interlinking nodes 
(Figure 3). The subnetwork contained 203 nodes and 415 edges 
(interactions between genes). Of the genes in MDDgene, 168 out 
of 255 were included in the MDD-specific network, which ac-
counted for 65.9% of MDDgene and 82.8% of the genes in the 
network, demonstrating a relatively high coverage of MDDgene 
in the subnetwork.

At the same time, 35 genes outside of MDDgene were intro-
duced into the MDD-specific molecular network (Table 2). Given 
these genes interacted closely with those known to be related to 
MDD, they might also be involved in the pathogenesis of the disease 
phenotype. Further functional enrichment analysis indicated that 
these genes were mainly involved in neuronal development, behav-
ior, learning and memory, and glutamate receptor signaling.

4  | DISCUSSION

Recent years, our understanding on the molecular mechanisms of 
MDD has been greatly improved. With the advancement and matu-
rity of high-throughput technology, we are able to identify the ele-
ments related to this disease on much larger scales. Although more 
and more genes/proteins potentially involved in the disease have 
been reported, a thorough analysis of the biochemical processes as-
sociated with the pathogenesis of MDD from the molecular aspect 
is still missing. In such case, a systematic analysis of MDD-related 
genes via a pathway- and network-based analytical framework will 
provide us insight on the disease beyond the single candidate gene-
based analyses. In this study, we tried to pool and curate the genes 
related to MDD from human genetic studies, and systematically de-
lineated the interconnection of these genes based on pathway and 
network analysis.

Compared with candidate gene(s)-based approach, a comprehen-
sive analysis on MDD-related genes conducted in this study has its 
own advantages. By implementing an extensive screening and com-
pilation of human genes from genetic association studies on MDD, 
we obtained valuable gene source data for further analysis. Especially, 
since the genetic susceptibility of MDD is related to multiple genes 
functioning cooperatively (Williams-Skipp et al., 2009), it is essential 
to explore the biological features of genes related to MDD from a 
perspective of molecular network level. At the same time, by focusing 
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TA B L E  1   Pathways enriched in MDDgenea

Pathways p valueb FDRc Genes included in the pathwayd

Neuroactive ligand–receptor 
interaction

4.76 × 10−18 3.93 × 10−15 GABRB3, GABRD, GABRG2, AVPR1B, GHRHR, CNR1, VIPR2, DRD1, 
HTR1A, DRD4, HTR1B, HTR2A, HTR2C, HTR4, HTR6, GRIA1, GRIA2, 
GRIA4, GRIK1, GRIK4, GRIN2A, GRIN2B, NR3C1, GABBR2, GRM7, 
GRM8, CRHR1, CRHR2, OPRM1, P2RX7, HCRTR1, GABRA4

Glutamatergic synapse 1.53 × 10−17 8.43 × 10−15 ADCY3, ADCY6, ADCY9, ITPR1, PLD1, GNB1, GNB3, HOMER1, 
CACNA1A, CACNA1C, CACNA1D, GRIA1, GRIA2, GRIA4, GRIK1, 
GRIK4, GRIN2A, GRIN2B, GRM7, GRM8, SLC1A2, PRKCG

Serotonergic synapse 1.93 × 10−16 7.99 × 10−14 GABRB3, CYP2C19, CYP2D6, MAOA, ITPR1, GNB1, GNB3, CACNA1A, 
CACNA1C, CACNA1D, CACNA1S, HTR1A, HTR1B, HTR2A, HTR2C, 
HTR4, HTR6, SLC6A4, TPH2, PRKCG, TPH1

Morphine addiction 5.67 × 10−16 1.72 × 10−13 GABRB3, GABRD, GABRG2, PDE1C, PDE2A, PDE4B, ADCY3, ADCY6, 
ADCY9, GNB1, GNB3, PDE11A, CACNA1A, DRD1, GABBR2, OPRM1, 
ARRB1, PRKCG, GABRA4

cAMP signaling pathway 3.10 × 10−15 7.32 × 10−13 PDE4B, ADCY3, ADCY6, ADCY9, BDNF, NFKB1, AKT1, PLD1, NPY, 
CACNA1C, CACNA1D, VIPR2, CACNA1S, DRD1, HTR1A, HTR1B, 
HTR4, HTR6, GRIA1, GRIA2, GRIA4, GRIN2A, GRIN2B, GABBR2, 
CREB1

Dopaminergic synapse 3.76 × 10−15 7.77 × 10−13 MAOA, ITPR1, AKT1, GNB1, GNB3, CACNA1A, CACNA1C, CACNA1D, 
DRD1, DRD4, COMT, GRIA1, GRIA2, GRIA4, GRIN2A, GRIN2B, CREB1, 
GSK3B, SLC6A3, ARNTL, PRKCG

Retrograde endocannabinoid 
signaling

4.40 × 10−15 8.08 × 10−13 GABRB3, GABRD, GABRG2, ADCY3, ADCY6, ADCY9, ITPR1, GNB1, 
GNB3, CNR1, CACNA1A, CACNA1C, CACNA1D, CACNA1S, GRIA1, 
GRIA2, GRIA4, PRKCG, GABRA4

GABAergic synapse 1.20 × 10−12 1.81 × 10−10 GABRB3, GABRD, GABRG2, ADCY3, ADCY6, ADCY9, GNB1, GNB3, 
CACNA1A, CACNA1C, CACNA1D, CACNA1S, GABBR2, SLC6A1, 
PRKCG, GABRA4

Circadian entrainment 6.06 × 10−11 7.71 × 10−9 ADCY3, ADCY6, ADCY9, ITPR1, GNB1, GNB3, CACNA1C, CACNA1D, 
GRIA1, GRIA2, GRIA4, GRIN2A, GRIN2B, CREB1, PRKCG

Amphetamine addiction 8.56 × 10−11 1.01 × 10−8 MAOA, CACNA1C, CACNA1D, DRD1, GRIA1, GRIA2, GRIA4, GRIN2A, 
GRIN2B, CREB1, SIRT1, SLC6A3, PRKCG

MAPK signaling pathway 3.26 × 10−10 3.37 × 10−8 CACNA2D2, BDNF, PTPRR, NFKB1, NGF, AKT1, CACNA1A, CACNA1C, 
CACNA1D, CACNA1E, CACNA1S, CACNB2, NTRK2, TGFB1, 
CACNA2D4, ARRB1, EGF, PRKCG, tumor necrosis factor (TNF), 
MAP3K13, IL1B, TP53

Nicotine addiction 8.21 × 10−10 7.14 × 10−8 GABRB3, GABRD, GABRG2, CACNA1A, GRIA1, GRIA2, GRIA4, 
GRIN2A, GRIN2B, GABRA4

Calcium signaling pathway 1.63 × 10−9 1.28 × 10−7 PDE1C, AVPR1B, ADCY3, ADCY9, ITPR1, CACNA1A, CACNA1C, 
CACNA1D, CACNA1E, CACNA1S, DRD1, HTR2A, HTR2C, HTR4, 
HTR6, GRIN2A, P2RX7, PRKCG

Dilated cardiomyopathy 3.35 × 10−8 2.05 × 10−6 CACNA2D2, ADCY3, ADCY6, ADCY9, CACNA1C, CACNA1D, 
CACNA1S, CACNB2, TGFB1, CACNA2D4, TNF, MYBPC3

Cholinergic synapse 4.83 × 10−8 2.85 × 10−6 ADCY3, ADCY6, ADCY9, ITPR1, AKT1, GNB1, GNB3, CACNA1A, 
CACNA1C, CACNA1D, CACNA1S, CREB1, PRKCG

Estrogen signaling pathway 8.81 × 10−8 4.87 × 10−6 ESR1, ADCY3, SHC3, ADCY6, ADCY9, ITPR1, AKT1, FKBP4, FKBP5, 
GABBR2, CREB1, OPRM1

Cocaine addiction 1.07 × 10−7 5.51 × 10−6 MAOA, BDNF, NFKB1, DRD1, GRIA2, GRIN2A, GRIN2B, CREB1, 
SLC6A3

Aldosterone synthesis and secretion 1.19 × 10−7 5.61 × 10−6 PDE2A, ADCY3, ADCY6, ADCY9, ITPR1, HSD3B1, CACNA1C, 
CACNA1D, CACNA1S, CREB1, PRKCG

Insulin secretion 1.57 × 10−6 5.69 × 10−5 ADCY3, ADCY6, ADCY9, CACNA1C, CACNA1D, CACNA1S, PCLO, 
CREB1, PRKCG, SNAP25

Amyotrophic lateral sclerosis (ALS) 1.96 × 10−6 6.75 × 10−5 APAF1, GRIA1, GRIA2, GRIN2A, GRIN2B, SLC1A2, TNF, TP53

(Continues)
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Pathways p valueb FDRc Genes included in the pathwayd

Longevity regulating pathway 2.40 × 10−6 7.93 × 10−5 RPS6KB1, ADCY3, ADCY6, ADCY9, NFKB1, AKT1, PRKAG2, CREB1, 
SIRT1, TP53

Taste transduction 1.04 × 10−5 2.39 × 10−4 PDE1C, ADCY6, GNB3, CACNA1A, CACNA1C, HTR1A, HTR1B, 
GABBR2, GABRA4

Oxytocin signaling pathway 1.06 × 10−5 2.41 × 10−4 CACNA2D2, ADCY3, ADCY6, ADCY9, ITPR1, PRKAG2, CACNA1C, 
CACNA1D, CACNA1S, CACNB2, CACNA2D4, PRKCG

Circadian rhythm 1.11 × 10−5 2.48 × 10−4 PRKAG2, NPAS2, NR1D1, CREB1, CRY1, ARNTL

Inflammatory bowel disease (IBD) 1.27 × 10−5 2.65 × 10−4 IL10, STAT1, NFKB1, TBX21, TGFB1, TNF, IL1B, IL6

Renin secretion 1.27 × 10−5 2.65 × 10−4 PDE1C, ACE, ADCY6, ITPR1, CACNA1C, CACNA1D, CACNA1S, CREB1

Gap junction 1.68 × 10−5 3.32 × 10−4 ADCY3, ADCY6, ADCY9, ITPR1, DRD1, HTR2A, HTR2C, EGF, PRKCG

Adrenergic signaling in 
cardiomyocytes

3.19 × 10−5 5.73 × 10−4 CACNA2D2, ADCY3, ADCY6, ADCY9, AKT1, CACNA1C, CACNA1D, 
CACNA1S, CACNB2, CREB1, CACNA2D4

Alzheimer's disease 3.25 × 10−5 5.78 × 10−4 NDUFV2, ITPR1, CACNA1C, CACNA1D, CACNA1S, APAF1, GRIN2A, 
GRIN2B, APOE, GSK3B, TNF, IL1B

Inflammatory mediator regulation of 
TRP channels

3.69 × 10−5 6.35 × 10−4 ADCY3, ADCY6, ADCY9, ITPR1, NGF, HTR2A, HTR2C, PRKCG, IL1B

Purine metabolism 4.08 × 10−5 6.95 × 10−4 PDE1C, PDE2A, PDE4B, PDE6C, ADCY3, ADCY6, ADCY9, ADK, 
PDE11A, XDH, NT5C2, PDE5A

Tryptophan metabolism 5.10 × 10−5 8.18 × 10−4 MAOA, IDO1, IDO2, EHHADH, TPH2, TPH1

Alcoholism 5.37 × 10−5 8.46 × 10−4 MAOA, SHC3, BDNF, GNB1, GNB3, NPY, DRD1, NTRK2, GRIN2A, 
GRIN2B, CREB1, SLC6A3

Longevity regulating pathway—mul-
tiple species

7.87 × 10−5 1.22 × 10−3 RPS6KB1, ADCY3, ADCY6, ADCY9, AKT1, PRKAG2, SIRT1

cGMP-PKG signaling pathway 9.88 × 10−5 1.41 × 10−3 PDE2A, ADCY3, ADCY6, ADCY9, ITPR1, AKT1, CACNA1C, CACNA1D, 
CACNA1S, CREB1, PDE5A

Long-term potentiation 1.30 × 10−4 1.77 × 10−3 ITPR1, CACNA1C, GRIA1, GRIA2, GRIN2A, GRIN2B, PRKCG

GnRH signaling pathway 1.59 × 10−4 2.05 × 10−3 ADCY3, ADCY6, ADCY9, ITPR1, PLD1, CACNA1C, CACNA1D, 
CACNA1S

Drug metabolism—cytochrome 
P450

1.71 × 10−4 2.18 × 10−3 CYP2B6, CYP2C19, CYP2D6, MAOA, UGT2A2, UGT2A1, UGT2B4

Neurotrophin signaling pathway 1.81 × 10−4 2.27 × 10−3 SHC3, BDNF, NFKB1, NGF, AKT1, NTRK2, NTRK3, GSK3B, TP53

Phospholipase D signaling pathway 1.81 × 10−4 2.27 × 10−3 AVPR1B, ADCY3, SHC3, ADCY6, ADCY9, AKT1, PLD1, GRM7, GRM8, 
EGF

Vascular smooth muscle contraction 2.06 × 10−4 2.47 × 10−3 AVPR1B, ADCY3, ADCY6, ADCY9, ITPR1, CACNA1C, CACNA1D, 
CACNA1S, PRKCG

Thyroid hormone synthesis 2.43 × 10−4 2.81 × 10−3 ADCY3, ADCY6, ADCY9, ITPR1, GPX5, CREB1, PRKCG

Chemokine signaling pathway 2.61 × 10−4 2.98 × 10−3 ADCY3, SHC3, ADCY6, ADCY9, STAT1, NFKB1, AKT1, GNB1, GNB3, 
GSK3B, ARRB1

Insulin resistance 4.48 × 10−4 4.80 × 10−3 RPS6KB1, NFKB1, AKT1, PRKAG2, CREB1, GSK3B, TNF, IL6

Long-term depression 5.03 × 10−4 5.33 × 10−3 ITPR1, CACNA1A, GRIA1, GRIA2, CRHR1, PRKCG

Apelin signaling pathway 5.46 × 10−4 5.57 × 10−3 RPS6KB1, ADCY3, ADCY6, ADCY9, ITPR1, AKT1, GNB1, PRKAG2, 
GNB3

ErbB signaling pathway 6.12 × 10−4 6.17 × 10−3 NRG1, RPS6KB1, SHC3, AKT1, GSK3B, EGF, PRKCG

Rap1 signaling pathway 8.72 × 10−4 7.75 × 10−3 MAGI1, ADCY3, ADCY6, ADCY9, NGF, AKT1, CNR1, GRIN2A, GRIN2B, 
EGF, PRKCG

Type II diabetes mellitus 1.02 × 10−3 8.77 × 10−3 CACNA1A, CACNA1C, CACNA1D, CACNA1E, TNF

Adipocytokine signaling pathway 1.06 × 10−3 9.09 × 10−3 NFKB1, AKT1, PRKAG2, NPY, POMC, TNF

Prolactin signaling pathway 1.15 × 10−3 9.71 × 10−3 ESR1, SHC3, STAT1, NFKB1, AKT1, GSK3B

AGE-RAGE signaling pathway in 
diabetic complications

1.41 × 10−3 1.12 × 10−2 STAT1, NFKB1, AKT1, TGFB1, TNF, IL1B, IL6

TA B L E  1   (Continued)

(Continues)
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on the biological correlation of genes, pathway and network analysis 
can not only give us a more comprehensive view for the pathological 
mechanisms of MDD, but they also are more robust to the influence 
of false-positive genes.

As revealed by function enrichment analysis, genes related to 
MDD were diverse in function, mainly involved in cell signaling, 
immune system, metabolic process, drug response processes, and 
neurodevelopment. Gene ontology biological process terms such as 
reverse cholesterol transport, positive regulation of IL-6 production, 
response to ethanol, lipoprotein metabolic process, diol metabolic 
process, xenobiotic metabolic process, and regulation of neuronal 
synaptic plasticity were overrepresented among MDDgene, imply-
ing the important roles of these processes in the pathological pro-
cesses of MDD. In addition, we noticed terms related to memory, 
visual learning, social behavior, sleep, axon regeneration, and axon 
guidance were also enriched in MDDgene, consistent with a priori 
biological findings on MDD.

Biological pathways enriched in MDDgene were involved in 
multiple biological systems, including the nervous system, immune 
system, endocrine systems, and signal transduction systems, or 
related to disorders like drug addiction and immune metabolism 
diseases. Actually, abnormality or dysregulation of many of these 
pathways has been known to be related to neurological diseases. 
For example, calcium signaling pathway has been reported to be 
involved in diseases such as nicotine addiction (Wang & Li, 2010), 
Alzheimer's disease (Karttunen et al., 2011), bipolar disorder and 
schizophrenia (Berridge, 2014), and depression (Donev & Alawam, 
2015; Duman & Voleti, 2012). Another example is the pathway of 
GABAergic synapse. As the most abundant inhibitory neurotrans-
mitter in the mammalian central nervous system (Lloyd, Perrault, 
& Zivkovic, 2017; Zhang et al., 2018), the defect of GABAergic 
neurons in the frontal cortex may be responsible for the patho-
genesis and development of MDD (Czéh et al., 2018). The iden-
tification of GABAergic synapse pathway in MDDgene provides 

Pathways p valueb FDRc Genes included in the pathwayd

Melanogenesis 1.58 × 10−3 1.23 × 10−2 ADCY3, ADCY6, ADCY9, POMC, CREB1, GSK3B, PRKCG

Osteoclast differentiation 1.61 × 10−3 1.24 × 10−2 SPI1, STAT1, NFKB1, AKT1, CREB1, TGFB1, TNF, IL1B

Gastric acid secretion 1.64 × 10−3 1.25 × 10−2 ADCY3, ADCY6, ADCY9, ITPR1, KCNK2, PRKCG

Ras signaling pathway 1.64 × 10−3 1.25 × 10−2 SHC3, NFKB1, NGF, AKT1, PLD1, GNB1, GNB3, GRIN2A, GRIN2B, EGF, 
PRKCG

FoxO signaling pathway 1.77 × 10−3 1.31 × 10−2 IL10, AKT1, PRKAG2, HOMER1, SIRT1, TGFB1, EGF, IL6

Toll-like receptor signaling pathway 1.88 × 10−3 1.35 × 10−2 STAT1, NFKB1, AKT1, IKBKE, TNF, IL1B, IL6

Cardiac muscle contraction 2.01 × 10−3 1.39 × 10−2 CACNA2D2, CACNA1C, CACNA1D, CACNA1S, CACNB2, CACNA2D4

Regulation of lipolysis in adipocytes 2.10 × 10−3 1.45 × 10−2 ADCY3, ADCY6, ADCY9, AKT1, NPY

NOD-like receptor signaling 
pathway

2.37 × 10−3 1.59 × 10−2 STAT1, ITPR1, NFKB1, NAMPT, P2RX7, IKBKE, TNF, IL1B, IL6

Steroid hormone biosynthesis 2.89 × 10−3 1.81 × 10−2 UGT2A2, UGT2A1, UGT2B4, HSD3B1, COMT

Thyroid hormone signaling pathway 3.48 × 10−3 2.10 × 10−2 ESR1, STAT1, DIO1, AKT1, GSK3B, PRKCG, TP53

Rheumatoid arthritis 4.12 × 10−3 2.34 × 10−2 ATP6V1B2, TGFB1, TNF, CTLA4, IL1B, IL6

Cytosolic DNA-sensing pathway 4.43 × 10−3 2.47 × 10−2 NFKB1, IL33, IKBKE, IL1B, IL6

IL-17 signaling pathway 4.84 × 10−3 2.67 × 10−2 NFKB1, GSK3B, IKBKE, TNF, IL1B, IL6

Bile secretion 6.88 × 10−3 3.45 × 10−2 ADCY3, ADCY6, ADCY9, ABCB1, UGT2B4

Hypoxia-Inducible Factor (HIF-1) 
signaling pathway

7.21 × 10−3 3.60 × 10−2 RPS6KB1, NFKB1, AKT1, EGF, PRKCG, IL6

T-cell receptor signaling pathway 7.91 × 10−3 3.80 × 10−2 IL10, NFKB1, AKT1, GSK3B, TNF, CTLA4

Metabolism of xenobiotics by 
cytochrome P450

8.18 × 10−3 3.90 × 10−2 CYP2B6, CYP2D6, UGT2A2, UGT2A1, UGT2B4

Apoptosis 8.87 × 10−3 4.13 × 10−2 ITPR1, NFKB1, NGF, AKT1, APAF1, TNF, TP53

Th17 cell differentiation 9.46 × 10−3 4.22 × 10−2 STAT1, NFKB1, TBX21, TGFB1, IL1B, IL6

TNF signaling pathway 9.88 × 10−3 4.37 × 10−2 NFKB1, AKT1, CREB1, TNF, IL1B, IL6

Abbreviations: FDR, false discovery rate; IL-17, interleukin-17; MDD, major depressive disorder.
aMDDgene: Genes related to major depressive disorder. 
bp value was calculated by Fisher's exact test. 
cFDR was calculated by Benjamini & Hochberg (BH) method. 
dGenes in MDDgene that were included in the specific pathway. 

TA B L E  1   (Continued)
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additional evidence that GABAergic dysfunction may lead to 
mood and cognitive symptoms of MDD. Interleukin-17 in the 
IL-17 signaling pathway plays a crucial role in acute and chronic 
inflammatory responses (Zhao, Li, Li, Wang, Manthari, & Wang, 
2018). Neuroendocrine and immune system interactions play an 
important role in stress response (Ashley & Demas, 2017; Dantzer, 
2018). Such results suggest that the immune system plays im-
portant roles in the onset of MDD. Both stress and inflammatory 
cytokine activation have been reported to have adverse effect 
on the neurogenesis and neural plasticity (Syed et al., 2018). By 
comparing our results with that of a meta-analysis on genes im-
plicated in MDD (Gatt et al., 2015; Manoharan et al., 2016; Yin 
et al., 2016), we found that most of the pathways reported ear-
lier were also identified in the current study. Further, as indicated 
by the pathway cross talk analysis, multiple physiological path-
ways and their interaction may be critical in the pathogenesis of 
MDD. Then, by integrating the result from this study and prior 
biological knowledge on the molecular mechanisms of MDD, we 
summarized a molecular network of the major pathway interac-
tion (Figure 4). In this molecular network, some key genes and 
pathways work together, such as glutamate synapses, dopamine 
synapses, serotonin synapses, gamma-aminobutyric acid (GABA) 
synapses, cAMP-mediated signal transduction cascades and cir-
cadian rhythm, and other signaling pathways. Among them, CaM 

and CaMKII play an important role in long-term potentiation and 
long-term depression, and they connect multiple pathway genes, 
suggesting that CaM and CaMKII may play an important role in the 
development of synaptic plasticity. Perhaps it is the key factor that 
affects the development of MDD. In addition, the genes CLOCK 
and BMALL are essential in several pathways related to MDD (e.g., 
prolactin signaling and circadian rhythm), suggesting they may be 
involved in the development of MDD. Since these pathways are in-
terconnected and they function cooperatively, dysfunction in one 
pathway may cause abnormality or dysregulation in others and 
eventually lead to the onset and development of MDD.

In the pathway cross talk network, there were several pathways 
related to other diseases, such as pathway of Alzheimer's disease, 
AGE-RAGE signaling pathway in diabetic complication, pathway 
of alcoholism, and pathway of dilated cardiomyopathy. Available 
evidence shows that each of these diseases has close correlation 
MDD. For example, it has been found that depression is associated 
with an increased risk of Alzheimer's disease, with MDD patients 
being 1.5 times more likely to develop Alzheimer's disease and 20% 
to 50% patients with Alzheimer's disease having depressive symp-
toms (Gibson et al., 2017; Saczynski. et al., 2010). Comparison of 
the molecules involved in the two diseases shows that they share a 
number of genes, regulatory elements like miRNAs, and quite sev-
eral biological processes and pathways (Hu, Xin, Xin, Hu, Zhang, 

F I G U R E  2   Cross talk between pathways related to major depressive disorder (MDD). The circular nodes represent pathways significantly 
enriched in the genes in associated with MDD, and each edge represents the cross talk between the two connected pathways, with the 
width corresponding to strength of the cross talk (i.e., the average of the Jaccard Coefficient and the Overlap Coefficient). The nodes labeled 
with numbers represent the following pathways: 1, “vascular smooth muscle contraction”; 2, “dilated cardiomyopathy”; 3, “estrogen signaling 
pathway”; 4, “gap junction”; 5, “inflammatory mediator regulation of TRP channels”; 6, “long-term potentiation”; 7, “longevity regulated 
pathway-multiple species”; 8, “Rap1 signaling pathway”; 9, “neuroactive ligand–receptor interaction”; 10, “amyotrophic lateral sclerosis”; 11, 
“taste transduction”; 12, “insulin resistance”; 13, “apoptosis”; 14, “AGE-RAGE signaling pathway in diabetic complications”; and 15, “prolactin 
signaling pathway”
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& Wang, 2017; Mendes-Silva et al., 2016), which is consistent 
with the prior knowledge that depression may be a risk factor for 
Alzheimer's disease or part of the symptoms of dementia. We also 
detected pathways related to diabetes (i.e., insulin secretion, insu-
lin resistance, and type II diabetes mellitus). Connection between 
diabetes and depression has been studied extensively, and there 
is clear symbiotic relationship between the two diseases (Han, 
2012; Lloyd, Pambianco, Pambianco, & Orchard, 2010; Patterson, 
Khazall, Khazall, MacKay, Anisman, & Abizaid, 2013; Roy & Lloyd, 
2012; Semenkovich, Brown, Brown, Svrakic, & Lustman, 2015). A 
possible explanation is that diabetes may affect the function of 
brain regions like hippocampus (Semenkovich et al., 2015), the 

abnormality in which may be involved in the pathogenesis of MDD 
(Colla et al., 2007; Ho, Sommers, Sommers, & Lucki, 2013).

In the subnetwork constructed by genes related to MDD, six 
genes outside of the MDDgene, that is, APP (amyloid beta precur-
sor protein), HSP90AB1 (heat-shock protein HSP 90-beta), PRKACA 
(catalytic subunit α of protein kinase A), GRB2 (growth factor re-
ceptor-bound protein 2), PRKCA (protein kinase C alpha), and SP1 
(transcription factor Sp1), were localized at the key positions in the 
subnetwork. Compared with other genes, they interacted with more 
genes in the network. We further extracted the genes interacting 
with these six genes to examine their connection with other genes 
(Figure 5). In the genetic interaction network centered on these 

F I G U R E  3   Major depressive disorder specific network. The major depressive disorder (MDD)-specific subnetwork was constructed via 
the Steiner minimum algorithm, including 203 nodes and 415 edges. The circular nodes represent the known genes related to MDD, while 
the red triangular nodes represent the genes newly introduced to the subnetwork, which may be genes potentially related to MDD. The 
edge represents the interaction between genes
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genes, approximately 78% (54/69) of the genes were members of 
MDDgene. Functionally, pathways related to the immune system or 
the nervous system were enriched in these genes, implicating these 
genes may be involved in MDD through their connection with path-
ways related to the immune system or the nervous system.

Among these genes, APP encodes the precursor molecule of 
beta amyloid, the primary component of amyloid plaques found in 
the brains of patients with Alzheimer's disease. In our pathway en-
richment analysis, pathway related to Alzheimer's disease was also 
enriched in MDDgene. Thus, even though the evidence on the role 
of APP in the pathogenesis of MDD is still limited, it may be closely 
related to MDD. Catalytic subunit α of protein kinase A and GRB2 
have been reported to be related to MDD. Previous studies using 
human peripheral and postmortem brain tissue samples have shown 
that some depressed patient's exhibit reduced PRKACA activity 
(Kastenhuber. et al., 2017; Pandey et al., 2007). Growth factor re-
ceptor-binding protein 2 (Melmed, Polonsky, Larsen, & Kronenberg, 
2016) is a 217 amino acid protein containing an SH2 domain and a pair 
of SH3 domains that are constitutions associated with a polyphonic 
sequence in the SOS protein. Glombik et al. (2017) examined the ef-
fects of the antidepressant imipramine, fluoxetine, and tianeptine on 
the insulin signaling pathway in the brain of adult antenatal stressed 
rats and found that the behavioral effectiveness of antidepressant 
therapy may be related to the beneficial effects of antidepressants 
on the insulin receptor phosphorylation pathway. This result was ob-
tained by measuring mRNA and protein expression of insulin, insulin 
receptor, insulin receptor substrate (IRS-1, IRS-2), and adaptor protein 
(SHC1, GRB2) before and after administration in the frontal cortex 
and hippocampus. In the hippocampus, it was found to have a certain 
relationship with the adaptor protein SHC1/GRB2. In addition, Sun 
et al. (2011) found that six of the seven SNPs in the GRB2 gene in 
the Irish population showed significant association with schizophre-
nia, and two of them (rs7207618 and rs9912608) remained significant 
after permutation test or Bonferroni correction test, indicating that 
GRB2 may be a risk gene for Schizophrenia in the Irish population.

Although our analyses suggest that these newly introduced 
genes may be involved in the pathogenesis or development of MDD, 
further investigation based on experiments is essential to decipher 
their connection with this disease.

Recently years, several models on the mechanisms of MDD have 
been developed. For example, based on the known regulatory net-
work of MDD physiological pathways, Stapelberg et al. (2018) and 
Stapelberg, Neumann, Neumann, Shum, and Headrick (2019) pro-
posed the psycho-immune-neuroendocrine network for MDD. The 
model mainly emphasizes the key transition forms from health to 
disease (MDD) state and can diagnose and predict the incidence of 
disease. Unlike their disease process model, our study constructed 
a framework for the analysis of complex disease susceptible genes 
based on the approach of biological pathways and protein interaction 
networks; more attention has been paid to the role of disease sus-
ceptible genes and their interactions in the pathogenesis of disease.

There are also some databases related to the genetic informa-
tion of MDD, but no dataset specific for MDD. As MDD is a complex 

TA B L E  2  Genes included in MDD subnetwork but not in MDD 
gene seta

Gene 
ID

Gene 
symbol Gene name

8811 GALR2 Galanin receptor 2

10653 SPINT2 Serine peptidase inhibitor, Kunitz type 2

29097 CNIH4 Cornichon family AMPA receptor auxiliary 
protein 4

8332 HIST1H2AL Histone cluster 1 H2A family member l

3131 HLF HLF, PAR bZIP transcription factor

2898 GRIK2 Glutamate ionotropic receptor kainate type 
subunit 2

79586 CHPF Chondroitin polymerizing factor

51738 GHRL Ghrelin and obestatin prepropeptide

6857 SYT1 Synaptotagmin 1

2776 GNAQ G protein subunit alpha q

6804 STX1A Syntaxin 1A

84988 PPP1R16A Protein phosphatase 1 regulatory subunit 
16A

8115 TCL1A T-cell leukemia

79849 PDZD3 PDZ domain containing 3

57698 SHTN1 Shootin 1

1742 DLG4 Disks large MAGUK scaffold protein 4

5520 PPP2R2A Protein phosphatase 2 regulatory subunit 
Balpha

4208 MEF2C Myocyte enhancer factor 2C

5578 PRKCA Protein kinase C alpha

8764 TNFRSF14 TNF receptor superfamily member 14

9737 GPRASP1 G protein-coupled receptor-associated sort-
ing protein 1

5781 PTPN11 Protein tyrosine phosphatase, nonreceptor 
type 11

5566 PRKACA Protein kinase cAMP-activated catalytic 
subunit alpha

5621 PRNP Prion protein

213 ALB Albumin

6667 SP1 Sp1 transcription factor

5499 PPP1CA Protein phosphatase 1 catalytic subunit 
alpha

4093 SMAD9 SMAD family member 9

3326 HSP90AB1 Heat-shock protein 90 alpha family class B 
member 1

6925 TCF4 Transcription factor 4

4149 MAX MYC-associated factor X

7046 TGFBR1 Transforming growth factor beta receptor 1

2885 GRB2 Growth factor receptor-bound protein 2

6696 SPP1 Secreted phosphoprotein 1

351 APP Amyloid beta precursor protein

Abbreviations: MDD, major depressive disorder; IL-17, interleukin-17.
aThe collected MDD candidate genes were used as seed nodes to 
construct and extract potential specific disease subnetworks by 
introducing a minimum number of genes according to the Steiner 
minimum tree algorithm. Among them, 35 genes are newly introduced 
non-MDD genes. 
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disease with high heterogeneity, its occurrence and development are 
inseparable from the interaction of components at different levels 
of each system. MK4MDD (Guo et al., 2012) is a database for MDD 
that contains data from seven different levels of research published in 
MDD experiments, as well as some MDD-related genes and pathways 
collected through the literature. As with the genes in the database, 
we started by studying the literature and employed genes that have 
sufficient evidence to show that they are indeed related to MDD. By 
examining the various information in the database, we found that 
many items of the GO biological process and pathways enriched in 
the MDDgene detected in this study were also included in the data-
base, such as behavior, learning or memory, neuron development and 
long-term depression, vascular smooth muscle contraction, and type 
II diabetes mellitus. Thus, the gene set MDDgene built in this study is 
relatively reliable, which could be a useful resource for MDD study.

There are some limitations in the current study. First, there are some 
subjective factors in the procedure of MDD candidate gene collection. 
For example, the collection of studies on MDD may be not comprehen-
sive enough because of the specific screening conditions we used; in 
many candidate gene studies, the selection of genes could be biased 
as they are often chosen based on prior knowledge of the disease it-
self or related diseases. For such reason, the collected MDD-related 

genes may include a high fraction of genes also associated with other 
mental disorder, but we believe that with further improvement, the 
pathogenic genes for MDD will be supplemented and the dataset will 
become more and more reliable. Second, although multiple pathway 
databases are available, we only utilized the KEGG pathway database in 
pathway enrichment analysis, which might lead to bias in the result. But 
on the other hand, the definition of pathway may be different in various 
pathway databases, which means pathways with same or similar names 
may be not consistent in different databases. To avoid the potential 
confusion caused by merging multiple databases, we relied on KEGG 
pathway database for our analysis. Third, the current available human 
PPIN is still incomplete and may include false-positive data, which may 
have impact on our results. Although there are some shortcomings 
in the current study, we believe the results obtained by us should be 
reliable. Finally, several studies on MDD via GWA meta-analysis have 
been published recently (Howard et al., 2018, 2019; Wray et al., 2018). 
Based on large sample sizes, a number of novel variants potentially as-
sociated with MDD have been identified in each study. These studies 
clearly demonstrated the power of GWA meta-analysis in detecting the 
genetic factors underlying complex disorders like MDD. However, due 
to the difficulties in data integration, we did not include the genes re-
ported in these studies in our analysis.

F I G U R E  4  Diagram of the major pathways and genes related to major depressive disorder (MDD). MDD is a complex disease with a 
number of genes and pathways coordinated and interrelated by multiple systems. The nodes in the rectangle represent the genes involved 
in each pathway. Small elliptical nodes represent neurotransmitters such as GABA, serotonin, dopamine, and glutamate. The large ellipse 
represents the main pathway involved in MDD. The dashed line and the solid line represent the indirect and direct relationship between the 
parts; the line of the arrow or breakpoint indicates the activation and inhibition of the action, respectively
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5  | CONCLUSION

In this study, we conducted a systematic analysis on genes genetically 
associated with MDD. Based on the 255 disease-related genes col-
lected, 73 significantly enriched pathways were identified. Pathway 
cross talk analysis indicated that three major modules were formed 
by these biological pathways, with each module including pathways 
related to cellular signaling transduction or the endocrine control, 
neuronal function or neurological disorders, and the immune sys-
tem, respectively. Then, the disease-specific subnetwork was con-
structed and a number of novel genes potentially involved in MDD 
were identified. When more candidate genes associated with MDD 
are identified, the procedure outlined in this study should provide 
more detailed gene interaction and pathological molecular network 
on MDD. In addition, information on MDD from other sources can 
also be integrated into the framework used in this study; then, we 
will be able to obtain a more comprehensive and meaningful under-
standing on the molecular mechanisms on the pathogenesis of MDD.
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